


NANOTECHNOLOGY AND GELLED CRYOGENIC FUELS

Presentation to Dr. Minoo Dastoor NASA Nano / Bio Initiative


Bryan Palaszewski NASA John H. Glenn Research Center, Lewis Field Cleveland, OH, 44135 1 May 30, 2001 E

BAP 01/09/2001

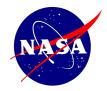
Nanoparticulates for Gelled and Metallized Gelled Propellants

NASA John H. Glenn Research Center, Lewis Field Turbomachinery and Propulsion Systems Division

O2 / RP-1 /Aluminum combustion – Aerogel and nanoparticulate metals can gel the fuel, making it denser, more energetic, and safer

Aerogel is a highly efficient insulator

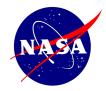
(CNN)


BAP 01/09/2001

http://www.cnn.com/TECH/9705/13/aerogel/index.html

The Benefits of Nanogellant Gelled Cryogenic Propellants and Nanoparticulates

- Nanogellant Gelled Propellants
 - Increased safety
 - Increased fuel density
 - Reduced leakage
 - Reduced slosh
 - Reduced cryogenic boiloff
 - Potential reduction in specific fuel consumption
 - Potential increases in engine thrust
- Nanoparticulate Metallized Gelled Propellants
 - All of the above and
 - Large increases in fuel density
 - Larger potential reductions in specific fuel consumption
 - Larger potential increases in engine thrust



Nanogellant and Nanoparticulates

NASA John H. Glenn Research Center, Lewis Field Turbomachinery and Propulsion Systems Division

• What are nanogellant and nanoparticulate fuels?

- Nanogellants are gellants that have a nanometer scale structure, which have enormously high surface area per gram
 - Gelled fuel reduce leakage and increase safety
- Nanoparticulates are metal particles that are 20 nanometers in diameter, much smaller than traditional 7 micron particles used for metal additives
 - Smaller particles allow for more efficient combustion and lower specific fuel consumption

Nanogellants and Nanoparticulates

NASA John H. Glenn Research Center, Lewis Field Turbomachinery and Propulsion Systems Division

Why are Gelled Cryogenic Fuels revolutionary?

- Gelled cryogenic fuels reduce leakage and increase safety
- Gelled cryogenic fuels are critical for increasing operability of cryogens for aerospace vehicles
- Nanogellant for gelled cryogens has a surface area of nearly 1000 m²/g, leading to cryogenic fuels gelled with 1-7 weight % gellant, 25 to 50% less mass than traditional gellant material
- Synergy
 - Gelled and metallized gelled propellants have been an area of considerable interest in the rocket propulsion and explosives

Propellant Technologies: Teams

- National team
 - NASA MSFC (large scale rocket engine testing)
 - NASA GRC (gelled and metallized gelled propellants, small scale engine tests)
- NASA partners and contacts
 - U.S. Army Picatinny Arsenal (potential collaboration in nanoparticles)
 - USAF Research Laboratory (hydrocarbons)
 - U.S. Army Aviation and Missile Command (metallized gelled propellants)
 - U.S. Naval Surface Warfare Center, Indian Head (nanoparticle aluminum, explosives)
 - Technanogy (nanometer aluminum particles)
 - Small Business Innovation Research (Argonide, Orbitec, etc.)
 - Many other industry, Government, and university partners

Metallized Gelled Propulsion

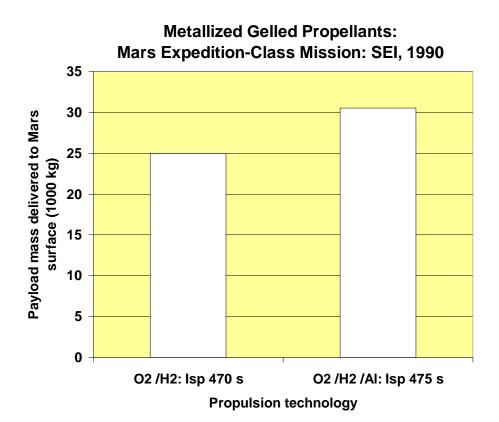
NASA John H. Glenn Research Center, Lewis Field Turbomachinery and Propulsion Systems Division

Oxidizer	Fuel	Metal
0 ₂	H ₂	Al
0 ₂	Hydrocarbon	Al
ΝΤΟ	MMH	Al

• Metal additives are suspended in gelled fuel and they undergo combustion with oxidizer

Metallized Gelled Propellants: Increasing Rocket Specific Impulse for Mars Missions

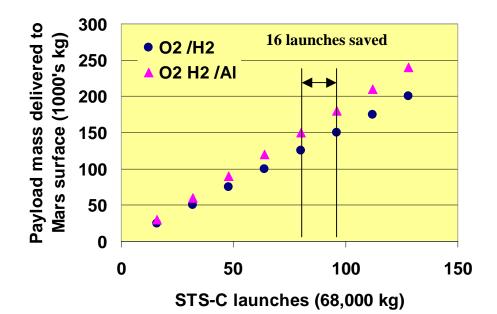
- Mars missions using metallized gelled O2 /H2 /Al have an Isp of 475 to 480 seconds.
- O2/H2 without gellants or metal particles has an Isp of 470 seconds
- Rocket specific impulse (Isp) increased for several reasons:
 - Adding metal shifts O/F ratio from 6.0 to 1.6 (with 60 wt% Al), reducing the molecular weight
 of the rocket exhaust
 - Reducing the molecular weight increases engine Isp
 - Adding metal actually decreases the combustion temperature by 500 K
 - The added metal weight percent (wt%) is 60 to 70 % of the total H2/Aluminum fuel mass
 - Adding 60 wt% Aluminum increases engine Isp by 5 seconds
 - Adding 70 wt% Aluminum increases engine Isp by 10 seconds
 - O/F change increases Mars vehicle volume by only 1.1 % over the O2/H2 case
 - References:
 - Palaszewski, B., "Metallized Propellants for the Human Exploration of Mars," NASA-Lewis Research Center, NASA TP-3062, presented at the Case For Mars IV Conference, Boulder, CO, June 4-8 1990. Also in the AIAA Journal of Propulsion and Power, Vol. 8, No. 6, Nov.-Dec. 1992, pp. 1192-1199.
 - Palaszewski, B. and Rapp, D., "Design Issues for Propulsion Systems Using Metallized Propellants," NASA-Lewis Research Center, AIAA 91-3484, NASA TM-105190, presented at the AIAA/NASA/OAI Conference On Advanced SEI Technologies, Cleveland, OH, September 4-6, 1991.


Metallized Gelled Propellants: How Gellants Work

- Gellants create a cross-linked structure in the liquid fuel, much like a long chain polymer
- The gelled ljquid fuel is gelled with a small amount of gellant
 - RP-1: 0.9 wt% nanogellant
 - Liquid hydrogen: 7 to 8 wt% nanogellant
- The resulting gelled liquid is thixotropic (shear thinning), and its viscosity is 5 to 10 times that of the liquid alone
- The viscosity drops to the liquid viscosity when the fuel flows
- Metal particles, if small enough (nanometer sized), can act as a self gellant, reducing or eliminating the need for a separate gellant

Mars Missions: Space Exploration Initiative (SEI) and Metallized Gelled Propellants

- Mars missions using
 - O2 /H2
 - Metallized gelled propellants: O2 /H2 /Al
- 20 to 33% higher payload to Mars surface for each flight

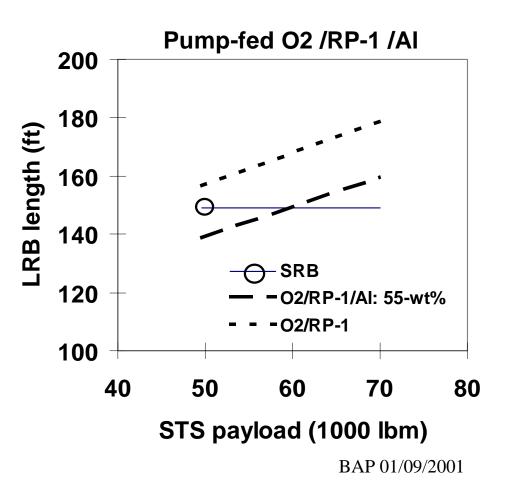


Mars Missions: Space Exploration Initiative (SEI) and Metallized Gelled Propellants

NASA John H. Glenn Research Center, Lewis Field Turbomachinery and Propulsion Systems Division

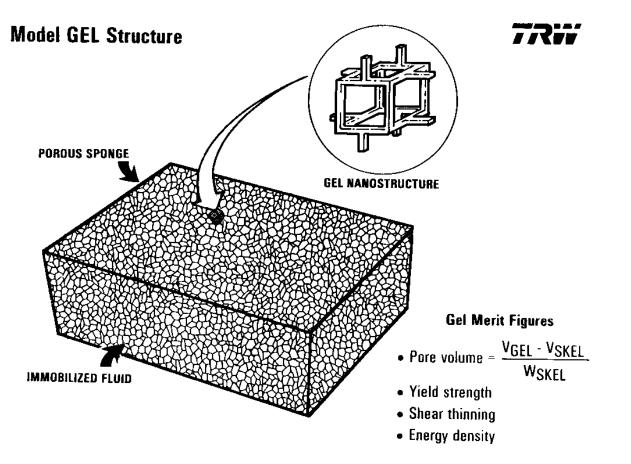
- Mars missions using
 - O2 /H2
 - Metallized gelled propellants: O2 /H2 /Al
- 20% more payload to Mars surface for each flight, with metallized gelled H2 /Aluminum
- Significant launch vehicle savings with O2/H2/A1 propellants
- 16 STS-C launches saved over 5 Mars missions
- Faster payload delivery schedule, and billions saved

Metallized Gelled Propellants: Mars Evolution-Class Missions: SEI, 1990

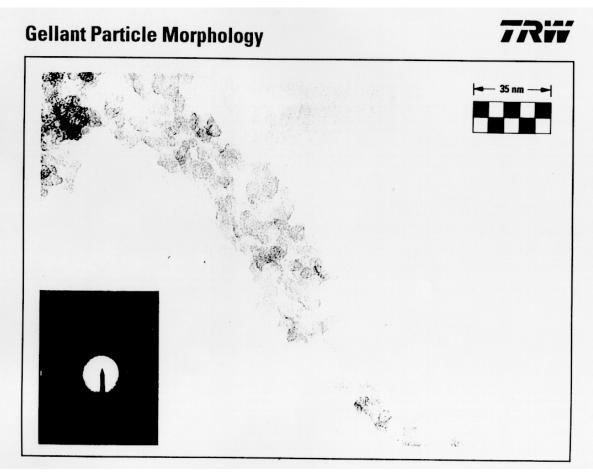


BAP 01/09/2001

O₂/RP-1/Aluminum Liquid Rocket Booster for Space Shuttle (Future STS)


- Payload increases of 14% possible with 55-wt% RP-1/Al (56,600 lbm)
- Small 1-ft diameter increase lifts payload to 70,000 lbm
- O2/RP-1: 324 s Isp O/F = 2.7
- O2/RP-1/Al: 317 s Isp O/F = 1.1




- Worked with TRW (1989-1996) developing nanoparticulate gellants
- Nanogellants are hydrocarbon alkoxide materials, created with a supercritical processing method
 - Nanogellant for gelled cryogens has a surface area of nearly 1000 m²/g, leading to cryogenic fuels gelled with 0.9 to 7to 8 weight % gellant,
 - 25 to 50% less mass than traditional gellant material
- Liquid hexane, RP-1, propane (cryogenic), etc. gelled with less that 0.9 wt% of nanogellant
- Liquid hydrogen gelled with 7 to 8 weight % nanogellant (NAS3-25793, 1994 and NAS3-26714, 1996)
- Extensive data base on gelled propellants at NASA Glenn
- Joint NASA /TRW work in nanogellants being reinvigorated

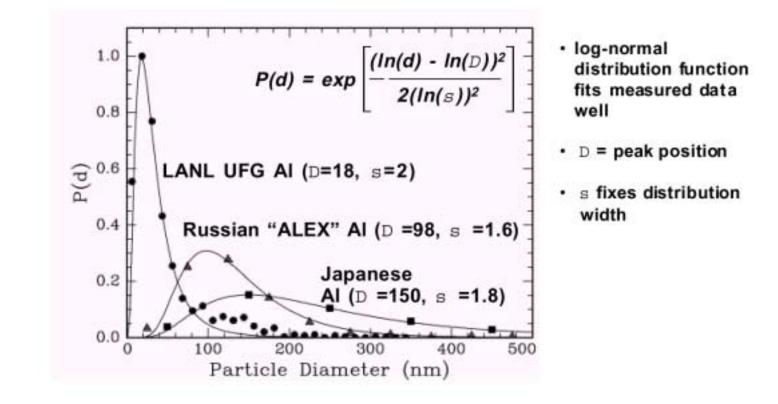
Transmission Electron Microscopy (TEM) photo of nanogellant

BAP 01/09/2001

NASA John H. Glenn Research Center, Lewis Field Turbomachinery and Propulsion Systems Division

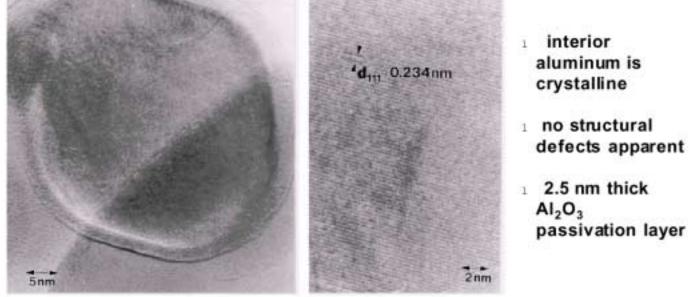
TRW aerogel type nanogellant, Circa 1990

BAP 01/09/2001



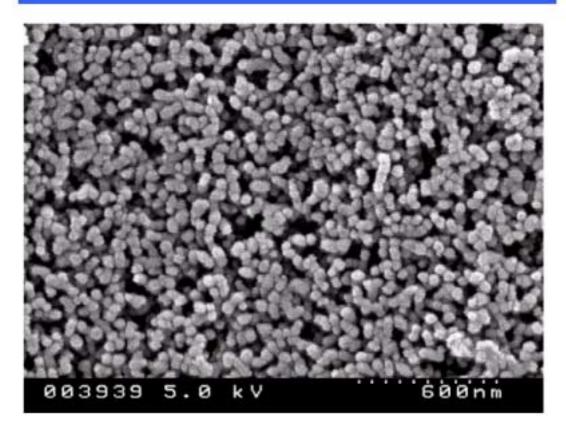
Dynamic Gas Condensation Is Used At LANL To Fabricate MIC Reactants

LANL AI Powders Have A Smaller Mean Size And A Narrower Size Distribution Than Commercial Powders



Materials Science and Technology

LANL UFG ALUMINUM PARTICLES ARE SINGLE CRYSTALS WITH NEGLIGIBLE STRUCTURAL DEFECT DENSITY


GAS-CONDENSED A1 PARTICLE Al (III) LATTICE FRINGES

Materials Science and Technology

SEM of LANL UFG ALUMINUM PARTICLES

Materials Science and Technology

BAP 01/09/2001

Nanoparticle and Nanogellant Fuels: Small Business Innovation Research (SBIR)

- Argonide (Sanford, FL)
 - Title: Metastable electroexploded nanophase aluminum based gels as a component of propulsion fuels
 - SBIR Phase II completed 2001
 - Alex and other metals produced by the electroexplosion of metal wire are metastable, producing additional energy and burning rate
 - Discovered reduction of ignition delay with gelled Oxygen /RP-1/ Aluminum fuels
- Orbitec (Madison, WI)
 - Title: Gelled LH2 /UFAL /LOX propellant system
 - SBIR Phase I underway -2001
 - Uses ultra-fine aluminum powder (UFAL) to develop a gelled LH2 fuel and LOX propellant system.
 - This innovation will increase the performance, density, and combustion efficiency of LH2/Al/LOX for use in rockets and combined-cycle vehicles

Propellant Technologies – Applications and Fuels

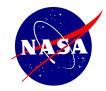
- Nanogelled Cryogenic Propellants with Nanoparticulate Additives
 - Revolutionary Aeropropulsion vehicles
 - Next generation aerospace vehicles
 - Many others
- Planned fuels:
 - Liquid methane
 - Liquid propane
 - Liquid nitrogen
 - **RP-1**
 - Jet A
 - **JP-8**
 - Liquid hydrogen (last to be addressed in testing)

Approach

NASA John H. Glenn Research Center, Lewis Field Turbomachinery and Propulsion Systems Division

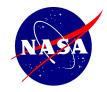
• First year goals:

- Determine the location for Nanogellant Production
 - Produce nanogellant
 - Characterize the nanogellant production uniformity
 - Determine the effects of storage (shelf life) of the nanogellant
- Determine the location for Nanoparticulate Production
 - Produce nanoparticles
 - Characterize the particle size and uniformity
- Determine the location for the multi-fuel test area
- Ambient temperature check out
 - Produce gelled aviation fuel (high H/C ratio fuel)
 - Produce an aviation fuel doped with nanoparticulates
 - Produce a gelled aviation fuel doped with nanoparticulates
 - Determine the characteristics of the gelled-doped aviation fuel



Approach

NASA John H. Glenn Research Center, Lewis Field Turbomachinery and Propulsion Systems Division


• Second year and third year goals

- Liquid nitrogen (LN2) check out
 - Produce gelled LN2 using nanogellants
 - Produce a mixture of LN2 and nanoparticles
 - Produce doped-gelled LN2
 - Determine characteristics of the doped-gelled LN2
- Determine cryogenic fuels of interest (potential fuel include but are not limited to liquid propane, liquid methane, and liquid hydrogen)
- Fuel 1 to N testing
 - Produce gelled Fuel 1 to N using nanogellants
 - Produce a mixture of Fuel 1 to N and nanoparticles
 - Produce doped-gelled Fuel 1 to N
 - Determine characteristics of the doped-gelled Fuel 1 to N
 - Optimize production process if necessary to obtain desired results

Approach

- Fourth and fifth year goals
 - Build up combustion test area
 - Produce sufficient quantities of gelled-doped fuel in production area to support combustion tests
 - Develop diagnostic techniques
 - Measure uniformity of nanogellant/nanoparticulate dispersion in fuel
 - Effect of nanoparticulates on rotating machinery
 - Combustion process
 - Emissions
 - Perform initial combustion tests
 - Optimize fuel formulation and repeat combustion tests

Gelled and Metallized Gelled Propellants

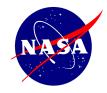
NASA John H. Glenn Research Center, Lewis Field Turbomachinery and Propulsion Systems Division

Contact: Bryan Palaszewski NASA John H. Glenn Research Center Lewis Field MS 5-10 Cleveland, OH 44135 (216) 977-7493 Voice (216) 433-5802 FAX bryan.a.palaszewski@grc.nasa.gov

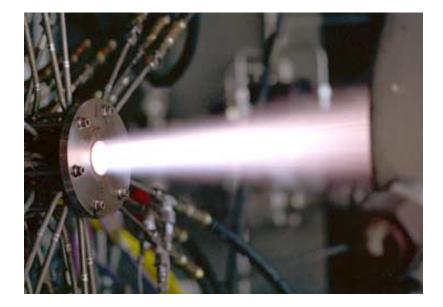
Fuels and Space Propellants Web Site http://www.grc.nasa.gov/WWW/TU/launch/foctopsb.htm

Gelled Hydrogen Propellants

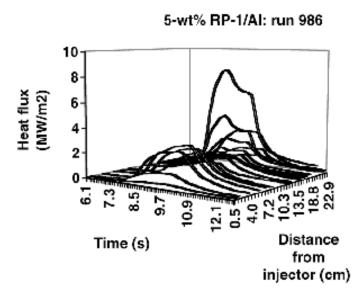
NASA John H. Glenn Research Center, Lewis Field Turbomachinery and Propulsion Systems Division

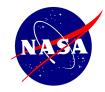

Past Results

- First gelled cryogen (nitrogen) was formulated circa 1960
- Evaporation (boiloff) of gelled hydrogen
 - reduced by factor of 2 to 3 (NAS3-4186, 1966)
 - reduced by factor 25 to 50 % (NAS3-2568, 1964)
 - variations due to tank geometries, heat leaks
 - both used silica gellants, at high weight percentages (36 weight %)
- Work with Lockheed (LMSC) and MSFC, with frozen ethane (NAS8-20342, 1968)
- Later work used frozen ethane or methane gellant, at 4 to 10 weight % (Aerojet, SNP-1, 1970)
- Work with TRW using nanoparticulate gellants, at 7 to 8 weight % (NAS3-25793, 1994 and NAS3-26714, 1996)
- Extensive data base on gelled propellants at NASA Lewis



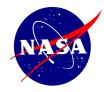
Metallized Gelled Propellants


- Goal
 - Determine combustion and heat transfer characteristics of metallized gelled RP-1 /Al propellants in a rocket engine
 - Evaluate fuels including traditional RP-1 and metallized gelled RP-1 /Al with 0-, 5-, and 55-wt % loadings of aluminum, with gaseous oxygen as the oxidizer
- Hardware
 - Experiments conducted with a 40-lbf thrust engine composed of a modular injector, igniter, chamber, and nozzle
 - 31 cooling channels for chamber calorimeter measurements, with temperature and pressure sensors
- Results
 - Gelled fuel coating, composed of unburned gelled fuel and partially combusted RP-1, formed in the 0-, 5- and 55-wt % engines
 - Coating caused a decrease in calorimeter engine heat flux in the last half of the chamber for 0- and 5-wt % RP-1 /Al propellants


Metallized Gelled Propellants

5 wt% RP1-Al rocket engine test firing at the GRC.

Three-dimensional roller-coaster plot of metallized gelled propellant heat flux: 5-wt % RP-1/Al.


The Benefits of Gelled and Metallized Gelled Propellants

- Gelled propellants
 - Increased safety
 - Increased fuel density
 - Reduced leakage
 - Reduced slosh
 - Reduced cryogenic boiloff
 - Increases in engine specific impulse (in some cases)
- Metallized Gelled Propellants
 - All of the above and
 - Large increases in fuel density
 - Large increases in engine specific impulse (in some cases)

Propellant Technologies: Nanotechnology

- Nanotechnology is applied to rocket and aerospace propellants
 - Gellants
 - for hydrocarbons
 - for liquid cryogenic fuels (hydrogen, methane, propane)
 - Nanoparticulate materials used for gellants (hydrocarbon alkoxides)
 - Gellants increase fuel safety, density, and energy
 - Gellants reduce fuel slosh, and reduce the vehicle dry mass with higher fuel density
 - Nanophase aluminum particles added to rocket and aerospace fuels
 - Metallized gelled propellants
 - **RP-1**/Aluminum
 - Hydrogen / Aluminum
 - Others (MMH / Aluminum, etc.)
 - Adding metal particles can increase engine exhaust velocity and fuel density

The Benefits of Gelled and Metallized Gelled Propellants

NASA John H. Glenn Research Center, Lewis Field Turbomachinery and Propulsion Systems Division

Gelled Propellants

- Increased safety
- Increased fuel density
- Reduced leakage
- Reduced slosh
- Reduced cryogenic boiloff
- Reduction in engine specific fuel consumption (in some cases)
- Increases in engine specific impulse (in some cases)

Metallized Gelled Propellants

- All of the above and
- Larger increases in fuel density
- Larger reductions in engine specific fuel consumption (in some cases)
- Larger increases in engine specific impulse (in some cases)